ケイ素系有機・無機ハイブリッド 材料とその新しい設計戦略

郡司 天博¹⁾、 阿部 芳首²⁾

- 1) 東京理科大学 理工学部 准教授
- 2)東京聖栄大学健康栄養学部教授
 (東京理科大学名誉教授)

マツモトファインケミカル技術講演会、2/22、2011

Scheme 1 研究の背景

講演内容(ケイ素系有機・無機ハイブリッド材料とその設計戦略)

- 1. はじめに
- 2. 新しいケイ素系無機前駆体
- 3. ハイブリッドの新しい設計法
- 4. 新材料開発の現状
- 5. ハイブリッドに関する我々の研究
- 6. おわりに

(以上の項目についてご紹介いたしますが、ページ数の関係で講演のPP から一部削除して要旨を作成してありますので、ご了承お願いいたします。)

1. はじめに

- 有機・無機ハイブリッドとは
- ・ これは有機それとも無機 ?
- なぜハイブリッドか

これは有機それとも無機材料?(元素組成からみて)

Are these recognized as hybrids ?

Compoun	Compound		
Furrerene	C60	0 (100)	
Polyacetylene	(CH=-CH-) _n	0 (100)	
T ₈ ^H (HSiO _{3/2}) _n	$\begin{array}{c} H \\ H \\ Si^{O}Si^{O} \\ J \\ 0 \\ OH \\ Si^{O}O \\ OH \\ Si^{O}O \\ OH \\ Si^{O}O \\ Si^{O}O \\ H \\ $	98	
Polysilazane	(−H ₂ Si−NH−) _n	93	
Polyphosphazene	(−C ₂ P=N−) _n	100	

なぜ有機・無機ハイブリッドか?

2. 新しいケイ素系無機前駆体

- 2.1 Carbo- & sila-functional silanes
- 2. 2 Silanes for self-assembly
- 2.3 Cubes and analogous
- 2.4 Sila-functional cyclosiloxanes

2.1 Carbo- and sila-functional silanes

Si(OR)₄

 $(RO)_3Si-(CH_2)_n-X$

 $X = CI, OH, NH_{2}, NCO, SH, CN, NH(CH_{2})_{3}NH_{2},$ epoxy, OCH₂-epoxy,OCO(CH₃)=CH₂, O(CH₂)₂OCH=CH₂, NHCO(CH₂)₂CON[(CH₂)₁₅CH₃]₂, Br⁻ N(Me)₂(CH₂)₅CONHCH₂CON[(CH₂)₁₅CH₃]₂, +

Y₃Si-(CH₂)_n-X

 $X = CH_3$, CH=CH₂, CH=CH(CH₂)₂CH=CH₂ Y = CI, OEt, OSi(OMe)₃ n = 4~18

2.3 Cubes and analogues as a potential precursor

Cubes with various R groups

Open cage

Double-decker

Sila-functional cubes

Cubes with one R_f groups

Cages from double decker

2. 4 Sila-functional cyclosiloxanes as a precursor for ladder silsesquioxanes

X = NCO(R=Me), Br(R=i-Pr)

Cyclosiloxanes

X = **H**(n=3~5), **NCO**(3~6)

3. 有機・無機ハイブリッドの新しい設計法

3.1 設計指針-1~5
3.2 合成例 1~7)(同時重合、共重合、混合)
3.3 合成例(自己組織化)-1~10

3.1 設計指針-2 =N (X=OH, NH, C=O etc.) a) Hydrogen bond b) lonic bond c) $\pi - \pi$ bonding d) $\sigma - \pi$ bonding g) Stereoe) Hydrophobic f) Host-guest complexing Schematic representation of various interactions

(京大院工、中條研)

3.1 設計指針-3

Preparation of organic-inorganic silica hybrids

3.1 設計指針-4

有機成分の構造	δ	無機成分の構造 δ
(-CH ₂ -CH ₂ -) _n	16.1	SiO₂ 24.8
(-CH ₂ -CH ₂ -O-) _n	17.8	H (-Şi-O-) _{n 23.2}
(-CH-CH ₂ -) _n	18.7	Ϙ Me (-Şi-O-) _n 16.6
(-CH-CH ₂ -) _n OAc	19.2	ф Ме
	19.4	(-Si-O-) _n 14.6 Me 85.4
PC	21.0	
PET	23.4	
6-Nylone	24.0-25.0	
Epoxy resins	23.6-24.7	

有機及び無機成分の溶解パラメータ δ (MJ/ m³) $^{1/2}$

3.1 設計指針-5

Molecular Design of Organic-Inorganic Hybrids

2) Silica microgel hybrid as precursors of sol-gel coatings

S. A. Pellice, et al, J. Mater. Chem., 2006, 16, 3318-3325

4) Organic-Inorganic Polymer Hybrids by Diels-Alder Reaction

Kaoru Adachi, Yoshiki Chujo et al, Macromolecules 2004, 37, 9793-9797

3) Twin Polymerization of the Single Monomers a) or b)

IPN型

Scheme 1. Cationic polymerization of a) TFOS with formation of a SiO₂ network and PFA and b) DFOS with formation of poly(dimethylsilane) and PFA.

Silke Grund, et al, Angew. Chem. Int. Ed. 2007, 46, 628-632

5) Hybrid by Polymerization of Double-decker-type Silsesquioxane with Diynes

M. Seino, et al., Macromolecules, 2006; 39(10); 3473-3475.

7) Hybrids from T₈^R and Org. polymer

分散型

3.3 合成例(自己組織化:Self-assembly;1~10)

・特徴

三次元精密構造制御

Without surfactants as a template

Formation of capusles with silica outer shell

形状安定(分裂、融合を起こさない)

構造制御因子

1)Si-OHの水素結合による超分子形成

2) 有機基の構造と疎水基間相互作用

3)イオン間相互作用

1) 混成型ハイブリッド(ポリマーハイブリッド:豊田中研 稲垣)

2) cis-Isotactic Ladder Polysilsesquioxane by Stacking and H-Bonding Super-

structure, Xiaojing Zhang, Ping Xie, Prof. Et al, Angew. Chem. Inter. Ed. Vol. 45, 19, 3112-3116 (2007)

側鎖π-π相互作用, シラノール基の水素 結合によりsupramolecular channelを形成 Figure 1. Schematic representation for the confined polycondensation of the monomer in ladder structure (a) to form the covalent ladder polymer (b).

Brown solid, highly soluble in *n*-hexane, toluene, THF, M_w =8.2 x 10⁵, [η]=2.25 x 10⁶ M^{1.24}, Tg 255.9 °C, ²⁹Si NMR signal : Half-peak width $\Delta_{1/2}$ < 0.3 ppm

4) Hexagonal-Structured Polysiloxane Material Prepared by Sol-Gel Reaction of Aminoalkyltrialkoxysilane without Using Surfactants(or long chain alkyl goups) Y. Kaneko et al, Chem. Mater. 2004, 16, 3417-3423

Hexagonal SiO₂ with a helical structure

8) Kaneko, Y. et al., J. Mater. Chem. 2009, 19, 7106

6) Hybrid fibers with helical structure

J. E. Moreau, et al., J. Am. Chem. Soc., 2001, 123, 1509-1510; Chem. Eur. J. 2003, 9, No.7

A left and right handed helix are self-asscemble via H-bonding mediated hydrolysis, according to the configuration of starting material structure.

7) Silica hybrids with lammellar structure by self-assembly (1) J. P. Corriu, et al., JACS, 2005, 127,11204

5) Cerasome : bilayer vesicles covered outside with siloxane network

Kiyohumi Katagiri, Jun-ichi Kikuti, et al., Chem. Eur. J. 2007, 13, 5272-5281; J. Am. Chem. Soc., 2002, 124, 7892-7893

Figure 1. Molecular structures of the cerasome-forming lipids (1 and 2) and schematic drawing of the cerasome.

9) Hybrid nanocapusules with Si-OH functional micelle template

T. Fukuda, et al., Angew. Chem. Int. Ed. 2003, 42, 4194

- 1) 有機・無機ハイブリッドコート剤グラスカ (JSR)
- 2) 有機・無機ハイブリッド樹脂コンポセラ(荒川化学)
- 3) 包装材料用ガスバリアフィルム(凸版印刷)
- 4) ガラス用コーティング剤(麒麟ビール)
- 5) HPLC用カラム充填剤(京大、中西)
- 6) 光硬化及び超耐熱性シルセスキオキサン
- 7) PPE/siloxane hybrids
- 8) Cellulose PPSQ hybrids
- 9) 粘土鉱物ーナイロン6ハイブリッド(豊田中研)
- 10) Nylon, PNIPA/clay hybrid

製品	有機成分	無機成分	反応方法	特徴	企業
コート剤	MMA	$\begin{array}{l} 3\text{-MAPS} \\ \mathrm{Me_nSi(OMe)}_{4\text{-}n} \end{array}$	付加重合 Sol-gel	柔軟、耐光、 耐熱	JSR
コート剤 (硝子)		TMOS, Ti $(OPr^i)_4$, 3-MAPS, VTES	Sol-gel	耐摩耗性、高機 械特性、軽量化	麒麟 ビール
樹脂	P. amido, PMMA, BPA Phnol res.	RSi(OMe) ₃	付加重合 縮合 Sol-gel	耐熱性 電気特性	荒川化学
薄膜	PVA	TEOS	Sol-gel	耐酸素透過性 耐水性	凸版印刷
HPLC 充填剤	PEG, EtOH	TEOS	Sol-gel	細孔制御 分離機能	京大
膜材料		RSi(OMe) ₃ (R= H, Vi, Epoxy.	Sol-gel 付加	光硬化、 超耐熱性	東亞合成
改質PPE	PPE	Linear, ladder, & cube siloxanes	Mixing	耐熱、耐発火、 高成形性	旭化成
膜材料	Cellulose	Cube siloxanes	Mixing	低軟化点、高硬 度、高成形性	KRI
膜材料	Nylon	Clay	Mixing	機械的強度 高熱変形温度	豊田中研
樹脂、 膜材料	NIPA	Clay	Mixing	高伸縮性、高破 壞弾性、機械強 度、水吸脱着	川村理研

1) 有機・無機ハイブリッドコート剤の開発(JSR、山田) (グラスカ)

2) 有機・無機ハイブリッド(荒川化学、合田) : コンポセラシリーズ

PMMA-SiO₂

Epoxy-SiO₂

Polyamide/imide-SiO₂

3) 包装材料用ガスバリアーフィルム

4) ガラス用コーティング剤 (麒麟ビール:白倉)

6) 光硬化性(a) および超耐熱性シルセスキオキサン(b)

鈴木 浩、東亞合成(株) Photoinitiated Polym., ACS Symposium Series, 847, 306(2003)

7) Siloxanes / PPE hybrids (to improve low processability)

(Polyphenylene ether(PPE) has excellent thermal stability and good inflamability)

池田 正紀、旭化成㈱

目的: PPEの耐熱性を維持しつつ、溶融流動性(成形性)を改善し、かつ難燃性の向上を図る

各種添加剤によるPPEの特性改善

(キューブはPPEの耐熱性(熱変形温度)をほとんどそこなうことはない。)

PE, Nylon 6,6, PBT に対する**T₈^{Bu-i}の添加効果はない**。 (R. L. Blansky, et al., Nanocomposites 2001 (Chicago)

8) Cellulose/PSSQ hybrid as protecting films

K. Obata, et al., KRI Co. Ltd

As a transparent protecting films

 $[C_6H_7O_2(OH)(OCOCH_3)_2]_n$

(**R**=(CH₂)₃-epoxy, (CH₂)₃OCH₂-epoxy) **Amount added : 20, 30 wt%**

20 wt%, 30 wt%

- Softning temp. 249° \longrightarrow 205, 193°
- Pencil hardness 1H --- 2H, 3H
- Young modulus(MPa) 2992 --- 2569, 3151

Properties of NCH

Specimen	Montmorillonite (wt %)	Tensile Strength (MPa)	Tensile Modulus (GPa)	Heat Distortion Temperature (°C at 18.5kg/cm ²)
NCH 5 (層間重合によ	4.2 る)	97	1.9	152
NCC 5 (混合系による	5.0)	61	1.0	89
Nylon 6	0	69	1.1	65

Clay-PP(MAH, Extrusion), Polystyrene(oxazoline), Polyacrylate(Intercalation), Polyimide(Solubilization with solv.)等のハイブリッド系も開発されている。

10) PNIPA / Clay hybids by in situ polymerization (2)

Kazutoshi Haraguchi, et al., Macromol, 2007, 40, 2299, 4287, & 5526; Adv. Mater., 14, 1120 (2002)

Polymer hydrogels : High H₂O absorption & diffusion rate, soft mechanical properties, high transp., wet surphase, goog biocompatibility
 Their disadvantages: Poor mechanical, structural, & absorption properties due to networsk with cross-linkage

CH₂=CHCONHPrⁱ + Clay (NIPA) (Laponite XLG) K-peroxodisulfate(KPS) Me₂NCH₂CH₂NMe₂ (TMED) Clay/PNIPA Hybrid

PNIPA crosslinked with MBA ((CH₂=CHCONH)₂CH₂)

Clay/PNIPA Hybrid

Characteristics of Clay/PNIPA :

- 1) Ultra-high elongation (1000%)
- 2) Higher fracture energy (3300 times) than PNIPA gels
- 3) Controlled modulus & strength
- 4) Superb swelling & deswelling

(CH₂=CH-COOCH₂CH₂OMe – Clay system)

5. ハイブリッドに関する我々の研究

Synthesis of new material :

- 5. 1) Hybrids from VTS, 3-MAS, 2-MES
- Polyalkoxysiloxanes PAOS by sol-gel process of Si(OR)₄
- 5. 3) Oligo- & polysilsesquioxanes

Synthesis of hybrids from VTS by routes A and B (Bu^tO)₂ / VTS H₂O, HCI / VTS MeO-Si-OMe MeO-Si-OMe ·Si-O-MeOH, 70°C, 3h Solv. reflux **OMe** OR **OMe** m **VTS** (R=H, Me) **PVTS PVPS Route A** 1)Proc. of Colour Mats. (Tokyo), 46-9 (2002). 2)Appl. Organometal. Chem., 17, 580-588 (2003). **PVTS PVPS** 3)J. Sol-Gel Sci. and Tech., 33, 9-13 (2005). *Mw* x 10⁻⁴(DC%) D.P.($Mw \ge 10^{-2}$) 76 (113) 8.0 (7.0) 50 (74) 1.7 (9.0), 5.0(9.3), 8.6(10.3), 17.0(13.3) H₂O, HCI / VTS 22 (32) 1.3(15.9), 2.0(17.2), 4.0(18.1), 13.2(19.0) 13 (18) 1.4(17.3), 2.5(21.4), 4.4(22.8), 14.0(23.3) 4 (6) 0.5(26.1), 1.1(32.6), 3.8(57.5), 5.0(65.2) **Route B** (Bu^tO)₂ / VTS=0.05-0.2, Solv. : Non, Toluene, Benzene*, : AIBN was used. Molar ratio :H₂O / VTS = 0.13 - 0.29 (* 0.08, 1.00), HCI / VTS = 0.0002 (* 0.040 - 0.056) Table 2 Preparation of VPSQ by hydrolytic polycondensation of VTS^{a)} GPC Ratio of siloxane unit Molar ratio No. DC (%) H₂O/Si **Free-standing films** $M_{\rm w} \, {\rm x10^{-3}}$ T³ T^1 T^2 $M_{\rm w}/M_{\rm n}$ 7 1.1 1.1 1.4 11 77 48 41 **Coating films** 8 1.3 2.12.1 3 39 58 85 SiO₂-SiC-C Ceramics VPSQ 9 1.45 6.4 2.7 0 28 90 72 4) J. Sol-Gel Sci. & Technol., 16, 227(1999)

a) PVSQ used : 0.0167 mol as Si, HCl/Si=0.105, solvent: methanol 14 ml, Temp.: 70°C, Time: 3 h, stirring rate: 150 rpm, N_2 flow rate: 360 ml/min.

Properties of hybrids PVPS from VTS by routes A and B

	Hybrids by		
	Route A	Route B	
Decomp. /°C (DC%)	262–271 (24–25)	320-430 (70-85)	
Weight loss/%(1400°C)	45–54 (DC 25%)	22-27 (DC 85-89),	9 (DC 93%)
T%(500 nm)	>93		
R. Index	1. 44		
Tensile strength /MPa (Young's modulus)	1(6) - 14(567)	6(380) - 12(1320)	
Adhesion	10(glass), 4-8(nylon)		
Hardness	6B - 7H		
Expanssion(ppm/°C)	20		
3	3.8		

Simultaneous polymerization of VTS

		_					- b)	
No Solv	Solv.	Mo	Molar ratio			GPC ⁵		
NU. 30IV.		(ml)	ACMP/VTS	H ₂ O/Si	HCI/Si	Mw	<i>M</i> w/ <i>M</i> n	(%)
12	—	_	0.05	0.110	0	150000	6.8	33
13		2		0.222	0.028	100000	6.1	55
14	Ethyllactor	5	0.05	0.444	0.056	135000	5.1	65
15		7	0.05	0.600	0.075	114000	5.8	67
16		12		0.955	0.120	120000	5.5	82

Table 3 Results on the simu	Itaneous polymerization of VTS ^{a)}
-----------------------------	--

a) VTS : 0.1mol ,Stirring rate : 150rpm, Time: 3 h, Temp.: 130 °C, N₂ flow: 50 ml/min.

b) Based on polystyrene

	Radical		²⁹ Si NMR (%)			
NO.	polymerization (%)	T ^o	T ¹	T ²	T ³	(%)
12	95	90.0	10.0	0	0	3.3
13	91	81.9	13.1	5.0	0	7.7
14	75	71.4	17.1	11.5	0	13.4
15	67	68.7	13.7	11.6	6.2	18.5
16	57	56.4	10.2	19.8	13.6	30.2

 Table 5
 Reactivity of simultaneous polymerization of VTS

a) Degree of condensation of siloxane bonding.

5.2) 目で見るゾルゲル反応

$$Si(OEt)_4 \xrightarrow{H_2O, Cat. Solv.} Sol \longrightarrow Gel$$

5. 2) Synthesis of PAOS by Sol-gel process of Si(OR)₄

市販工業材料との比較

•市販工業材料

 Mn
 SiO2%

 SE40:700-1,200
 40 (TEOSと溶媒を含む低分子量体の混合物)

 HAS: ~2,000
 50 (TEOSとTEMOSの共縮合物)

Polyalkoxysiloxanes (Et, Me)

Mw (Mw/Mn)	SiO ₂ %
Et: 1,700 – 11,700 (1.2~3.8)	60<
Me: 2,700 – 31,000 (1.7~8.2)	70<

縮合に対し安定 有機溶媒に可溶 高い付着力 柔軟な自己支持膜の形成 主な構造単位:Q³(55~65%) O²(30~20%)

H ₂ O/TEOS	1.6 - 1.8
Tensil s. (MPa)	1.6 - 5.2
Young's m. (MPa)	34 - 156

²⁹Si CP / MAS NMR spectra of PEOS

共重合体の合成

Si(OEt)₄ + MeSi(OEt)₃

TEOS

MTES

- As confirmed by:
- x/y =1 (¹H NMR, ²⁹Si NMR)
- •T³: shift to lower field vs PMSQ
- No signal shift after reprecipitation
- GPC (unimodal)

•TEOS/MTES=1, 1.5, 2.3

- •Mw: 3,000~10,000(Mw/Mn 1.7~2.9)
- Stable to self-condensation
- Soluble and spinnable
- Free-standing and coating films(~6H)

Fig. 9 Gel film prepared from PSQ

5. 3) Oligo- & polysilsesquioxanes

Abe, Y.et al. Chem. Lett. 2006, 35, 114.

- Vapor phase hydrolysis provides a very convenient method to prepare sila-functional oligosiloxanes.
- The silane <u>4</u> is a potential building block. In order to obtain <u>4</u> in good yiels, there are the key factors to be considered: 1) Intramolecular condensation from 3 to 4. 2) Molar concentration of substrate on the reaction.

2) Merill, D. F. Canadian Patent, 868996, **1971**.

3) Itoh, M. Silicon Chemistry Japan 2001, 15, 19.

Synthesis of ladder oligosilsesquioxanes

(to obtain spectral data for the structure of perfect ladder polysilsesquioxanes)

Seki, H. et al., J. Organomet. Chem., in press.

Seki, H. et al., Chem. Lett., under contribuion.

Synthesis of polymethylsilsesquioxane

(with controlled ladder structure has never been obtained.)

Results on synthesis of PMSQs and the data to estimate ladderness

x	State	Yield,%	M _w	M _w /M _n	а	△ _{1/2}	T ³ /T ²	
Н	W. pow.	97	42,000 ^{a)}	2.7	0.38	190	3.6	
OEt	Vis. liq.	56	55,000	5.8		184	1.3	
NCO	W. pow.	72	70,000 ^{b)}	2.1	0.53	118	8.9	
a) 214	.000 b) 28	5.000						

6) Seki, H. et al., J. Organomet. Chem. 2010, 695, 1363.

	Diol / T ₈ ^H	State	Mw	Mw/Mn
	2	White powder	45000	2.0
FF3Q-1	4	White powder	11000	1.5
PPSO-2	2	White powder	27000	1.8
PP3Q-2	4	White powder	9000	1.6
	550	White powder	45000	2.3
PPSQ-Me	1100	H.viscous liq.	41000	3.2
	4200	H.viscous liq.	9000	2.7

• Gels were formed in Diol / $T_8^H = 1$ (PPSQ-1 & -2)

• PPSQs were soluble exept for MeOH and C₆H₁₄ for PPSQ-1 & -2)

おわりに

- これまでの約40年間にわたる研究により多くの貴重な成果が 得られるとともに、若手研究者の著しい進出があり、これらが 今後の研究推進の原動力になると期待される。
- 2. 自己組織化および粘土鉱物--有機高分子系の複合化領域で、新 材料の創製と製品の上市も実現されつつある。
- 3. ここ数年包装材料、コート材の上市があり、エレクトロニクス、 封止、添加物材料の技術開発も具体化されつつある。
- 4. 医薬、医療、生体関連材料創製における新展開が期待できる。
- 5. この分野に研究開発と材料の製品化に大きな可能性と期待が寄せられている。